

Heavy-Hitter Detection on SmartNIC - using P4

Abstract:

Many network management applications can benefit from finding the set of flows contributing significant amounts of traffic to a link. Such flows are called "Heavy Hitters". Monitoring heavy hitters is required for example, to relieve link congestion or to detect network anomalies and attacks. Furthermore, heavy-hitters identification is done in small time scales, it can enable dynamic routing of the heavy flows and also dynamic flow scheduling.

In order to respond quickly to short-term traffic variations, it is desirable to run heavy-hitter monitoring at all switches and (Network Interface Card) NICs in the network all the time. It should identify packets belonging to heavy-hitter flows in a reasonable accuracy and by meeting hardware constrains such as limited number of accesses to memory storing state and a limited amount of memory available.

The target of HashPipe algorithm is to track the k heaviest flows with high accuracy using limited available memory. The HashPipe can be implemented on a programmable hardware such as Netronome SmartNic using P4 language.

Goals:

- Paper Reference Refer to https://www.cs.princeton.edu/~jrex/papers/hashpipe17.pdf
- Learn P4 Basics
 - Future of Networking and Past of Protocols -<u>https://www.youtube.com/watch?v=YHeyuD89n1Y</u>
 - Why we need programmable data plane -<u>https://www.youtube.com/watch?v=zR88Nlg3n3g</u>
 - P4-16 Programming Language https://karpef.cs.technion.ac.il/index.php/s/kkHkDjCjEEcWBgC
- Install P4-16 Behavior-model environment and perform P4 tutorial basic forwarding exercise with Mininet. Refer to: https://github.com/p4lang/tutorials
- Build Netronome SmartNIC environment that includes:
 - Agilio CX SmartNIC
 - Interfaces: 2x10Gb
 - Processor: NFP-4000
 - Memory: 2GB
 - Windows-based program to develop in Micro-C, P4 and assembly for the Agilio SmartNIC - NFP-4xxx/NFP-6xxx SDK 6.1-preview Programmer Studio IDE - r3286 -(2018/10/23) - <u>https://karpef.cs.technion.ac.il/index.php/s/rXLGDFwIAH76diG</u> In addition, refer to: https://www.netronome.com/media/documents/PB Programmer Studio 6.0.pdf
 - Perform the basic SmartNic labs. Refer to:
 - https://github.com/open-nfpsw/p4 basic lb metering nic/blob/master/workbook.pdf Sources can be found in: https://github.com/open-nfpsw/p4 basic lb metering nic
- Implement HashPipe with P4/C on the Netronome SmartNic. As reference refer to: <u>https://github.com/open-nfpsw/M-Sketch</u>
- Inject traffic using real captured ISP backbone link traffic (from CAIDA) and produce the following statistics:
 - o Overall Flow count
 - When reporting xxx (<u>TBD</u>) heavy hitters : % of False Negative (Real heavy-hitter that was not detected)
 - When reporting xxx (<u>TBD</u>) heavy hitters : % of False Positive ("fake" heavy-hitter detection)

Requirements:

•

Introduction to Networking (236334), Internet Networking (236341)

Python