

Software Defined Network (SDN) In-Band Boot Strapping

Abstract:

In traditional networks, the control software is distributed across all devices, which run routing protocols to
compute forwarding state. An advantage of this design is that legacy networks can use the in-band for the control
plane. This means that control plane packets are carried over the same data plane network as with the regular
traffic. Because legacy routing protocols are designed to exchange data between neighboring routers and do not
require global state, they are self-stabilizing in the sense that they can automatically bootstrap the network and
converge to a valid operating state from any initial conditions.

In contrast, Software Defined Networking (SDN) is based on the separation of the control plane from the data
plane. The network control logic is decoupled from the switches/routers and is moved to the SDN controller. This
approach provides several benefits in terms of improved flexibility and performance, ease of management and
decreased operational complexity, as well as lower maintenance costs. On the other hand it introduces difficulties
in the support of switch-controller communication along with the data traffic. The result is that most SDN
deployments today use out-of-band control, where control plane packets are carried by a dedicated management
network. Moreover, the controller configuration parameters (for example: Controller IP, Controller port #) in each
switch in those deployments are static.

Such way of deployment is a major obstacle and operators are looking for a way where both the control and data
planes will be transmitted on the same channel (in-band mode) and there will be no need to statically configure
each deployed switch. Implementing such an in-band mode is not trivial, since switches have to search and
establish a path to the controller (bootstrapping) via in-band. This becomes even more complex when the switches
are not directly connected to the controller and so the control plane packets must traverse through other switches
in the network.

OpenFlow Switch

OpenFlow Switch

OpenFlow Switch

DHCP Server

Goals:

1. Get familiar with SDN, Open Flow – start with https://www.opennetworking.org

2. Review proposal for InBand Boot Strapping using DHCP server :

https://www.researchgate.net/publication/261489665_Automatic_bootstrapping_of_OpenFlo

w_networks

3. Implement the proposal using Mininet , RYU SDN controller , DHCP Server and OpenFlow switches where:

a. DHCP Server should return: Switch IP address and in addition also Controller IP address, Controller

Port ID using option 43 (vendor specific).

b. Using CPqD OpenFlow switch (per https://github.com/CPqD/ofsoftswitch13) will enable to

customize the DHCP client to support option 43

Note: Learn how to raise Mininet environment using: https://github.com/mininet/openflow-

tutorial/wiki

Requirements:

Python , Internet Networking Course

https://www.opennetworking.org/
https://www.researchgate.net/publication/261489665_Automatic_bootstrapping_of_OpenFlow_networks
https://www.researchgate.net/publication/261489665_Automatic_bootstrapping_of_OpenFlow_networks
https://github.com/CPqD/ofsoftswitch13
https://github.com/mininet/openflow-tutorial/wiki
https://github.com/mininet/openflow-tutorial/wiki

